Extensions 1→N→G→Q→1 with N=C2 and Q=C3×C22⋊C4

Direct product G=N×Q with N=C2 and Q=C3×C22⋊C4
dρLabelID
C6×C22⋊C448C6xC2^2:C496,162


Non-split extensions G=N.Q with N=C2 and Q=C3×C22⋊C4
extensionφ:Q→Aut NdρLabelID
C2.1(C3×C22⋊C4) = C3×C2.C42central extension (φ=1)96C2.1(C3xC2^2:C4)96,45
C2.2(C3×C22⋊C4) = C3×C22⋊C8central extension (φ=1)48C2.2(C3xC2^2:C4)96,48
C2.3(C3×C22⋊C4) = C3×C23⋊C4central stem extension (φ=1)244C2.3(C3xC2^2:C4)96,49
C2.4(C3×C22⋊C4) = C3×C4.D4central stem extension (φ=1)244C2.4(C3xC2^2:C4)96,50
C2.5(C3×C22⋊C4) = C3×C4.10D4central stem extension (φ=1)484C2.5(C3xC2^2:C4)96,51
C2.6(C3×C22⋊C4) = C3×D4⋊C4central stem extension (φ=1)48C2.6(C3xC2^2:C4)96,52
C2.7(C3×C22⋊C4) = C3×Q8⋊C4central stem extension (φ=1)96C2.7(C3xC2^2:C4)96,53
C2.8(C3×C22⋊C4) = C3×C4≀C2central stem extension (φ=1)242C2.8(C3xC2^2:C4)96,54

׿
×
𝔽